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A diagrammatic technique was developed for the estimation of the screened 
potential of re-electron systems. The screened potential was expanded in terms 
of the polarization propagators which were constructed from either the singlet, 
pl ,  or triplet vertex part,/,3. These vertex parts correspond to the singlet or 
triplet excitations, respectively, in the Random Phase Approximation (RPA) 
containing exchange diagrams. The excitation energies were calculated by 
using the screened potential in the framework of RPA with exchange. The 
excitation energies of several conjugated molecules with or without a hetero 
atom are in agreement with the experimental data. 
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1. Introduction 

The excitation energies of a molecule are quantities of extreme importance in 
considering the electronic states of the molecule. They can be determined directly 
by use of the RPA method without the knowledge of the energies of the individual 
states involved in the excitation process [1~4]. However, the RPA method has a 
defect that the lowest triplet excitation energies calculated by this method turn 
out to be imaginary. Shibuya and McKoy have introduced the higher RPA method 
to remove this defect [5]. 

A previous paper [6] showed that the parameters based on L6wdin's orthogonal 
orbitals gave the triplet instability, even if the Green's function involving second- 
order perturbation terms was employed. On the other hand, the excitation 
energies calculated by the semi-empirical parameters agreed well with the ex- 
perimental values, even when only the first-order perturbation terms were taken 
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into account [6]. These results indicate that the effect due to the electron repulsion 
integrals is most important in the evaluation of the excitation energies, and that 
the excitation energies will be improved by considering the effective interaction 
including the correlation effect. 

Gutfreund and Little [7] constructed the effective interaction by summing up 
both the lowest ring diagrams and the diagonal parts of oysters, and calculated 
the excitation energies of ~-electron systems in the framework of the configuration 
interaction method. Tanimoto and co-workers [8] presented another type of the 
effective interaction by using the ladder diagrams, and discussed the correlation 
energies. 

Cooper and Linderberg [9] applied the Coulomb hole and screened exchange 
approximation, which was developed by Hedin [10], to the Pariser-Parr-Pople 
(PPP) method [11]. In their treatment, 1) the PPP parameters were used as the 
bare potential, and 2) the atom-atom polarizabilities, ~t,, were expressed in 
terms of the triplet vertex, F 3 which corresponds to the triplet excitation in the YS, t ' 

static case, and they were summed up into the effective interaction instead of the 
lowest ring diagram. We regard that the PPP parameters are not appropriate as 
the bare potential, since they contain inherently the screening effect. Moreover, 
the contribution of the singlet vertex, F~s ,,, to the excitation energies has not been 
examined. 

In this paper, the values of the bare potential are calculated theoretically by 
means of the Slater type orbitals [13], and the effective interaction, which involves 
either the singlet vertex, F ~ 3 r~,t, or the triplet vertex, F,.s,t, is derived by using 
diagrammatic techniques. The RPA with exchange, or equivalently the time 
dependent Hartree-Fock (TDHF) method will be applied to the estimation of the 
excitation energies. The evaluation of the matrix element is also discussed. 

2. Theory 

2.!. One-Particle Green's Function [-15, 16] 

The one-particle Green's function matrix in the co representation can be written as 

~(~o) = [~ ~ 1(c~)-2 (c~)]- 1, (1) 

where 0~ is the Green's function matrix for an unperturbed system, 2(~o), 
the perturbation matrix termed self-energy. If one chooses a Hfickel-type 
Hamiltonian, n o, as the unperturbed one and the first-order self-energy, ~(1), as 
2(~o), then 

~(~o)= [0~ 
= [ o J i -  (Ho + 2  ~i))]-  ~ (2) 

-- [ c o i - P ]  -~ , 
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where P is the Fock operator. If the Fock operator is evaluated by the PPP 
approximation, the matrix elements of the Green's function, G(co), become 

Ck i CI i . . . . .  Ck i Cl i 
Gkl (co) Y T co -- co~ + i~ i. co-  col - ig Jr , (3) 

where co~'s are the eigenvalues of P and C~ are the corresponding eigenvectors. 
The matrix elements of the electronic interaction are approximated by the fol- 
lowing form; 

gpr;s .~ dr 1 dr2~;q(rl)(9;.,(r2)r([rl-r2J)(gsn,(r2)(gq~(rl) 
= 7w (1 - 6,,, 3p~) 6vq 6rs, (4) 

where ~bp is thep ' th  atomic orbital and t/denotes the spin function. The first-order 
irreducible self-energies are shown diagrammatically in Fig. 1. The diagram (a) is 
evaluated from the Feynman Dyson rule by 

Xr ~c (CliCli~ll -~- 2 2CviCpiVlp), (5a) 
i p(•l) 

and the diagram (b) is also evaluated by 

o c t  

Z~2 )=-7~m ~ Ct~Cm,, (l#m). (5b) 
i 

Note that the diagram (a) represents the diagonal elements of the HF  potential 
and the diagram (b) the off-diagonal ones. The Green's function matrix can be 
obtained by an iteration method which is discussed in the following section. 

2.2. Screened Potential 

The screened potential [7, 9] is written as 

~, = '/,~ ~/~s+ ~ 7r,~c,,7,s, (6) 
tU 

and its matrix form becomes 

: [9-1 _ ~] - 1, (7) 

where 7~s is the bare potential and ~t, represents the atom-atom polarizability, If 
one multiplies the polarization propagator by the factor 2 and puts the frequency, 
co, to be zero, then the resultant becomes the atom-atom polarizability, rot, [12]. 
This static screening case is treated. Eq. (6) is shown diagrammatically in Fig. 2(a). 

Fig. 1. First-order irreducible diagrams (a) (b) 
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(a) ~ : ~ + 

- @  ........ < 2 )  ......... ......... ( I )  .... 

(d) ~ = ~ + 

Fig. 2. (a) Diagrammatic representation of 
Eq. (6). (b) Dyson equation for the polar- 
ization propagator. (c) Equation for the 
vertex part of the polarization propagator. 
(d) Gutfreund and Little's screened poten- 
tial [7] 

From this diagram, ntu is constructed by the free propagated part, n..;~ ,,, and by 
the vertex part, F,~,t, and is written as 

7r, t u = ~ 0 7"Cuu; rs F r s ,  t 
rs 

_ _  0 - ( 8 )  

r8 

o = (7ci) -1 ~dcoG,,(co)G~(o)). TC uv; rs (9) 
,J  

The polarization propagator in the RPA with exchange is represented diagram- 
matically in Fig. 2(b), and the vertex part in Fig. 2(c). 

The vertex parts for both the triplet and the singlet excitations are given by 

f 3  =/~ .~_/~-~ ,  (10a) 

and 

~1 =/~r/, Av/~q- rt ' (10b) 

respectively [-17]. The triplet and the singlet vertices, F 3 and F 1 are derived ps, t rs, t ~ 

from Fig. 2(c) and Eqs. (10a), (10b); 

1~ ( l la )  F 3 = ~,~ 8 ~ -  ~7,~ ~ o 3 
rs, t 

uv 

1 ~ 0 0 1 
F 1 ~ 8 r t  (~st - -  2 7 r s  E 0 1 1 ~ n,.~;,,vF,,,~,t+5V,.s~ ( l ib)  rs, t 

UV uv 

where the bare potential, Y,~, in Fig. 2(b) is replaced by the screened potential, 
~,~. If one neglects the second or higher terms inEqs. (1 la) and (1 lb), they become 
Gutfreund and Little's equations, and are shown in Fig. 2(d). 

We propose the following steps for practical computation: Step 1 : Calculate the 
Green's function, d(c~), by using the bare potential for the Fock operator, and 

o obtain the values of z~.~; ~s in Eq. (9). 
Step 2' Choose the first term of Eqs, (1 la), (1 lb) as the initial r 3(1) and obtain ~ r s ,  t , 

nt, from Eq. (8). 
Step 3: Calculate the screened potential, ~,~, in Eq. (7), and construct the new 
Green's function, G(~o), by using the ~,~. 
Step 4: Replace the vertex, r 3(1) in the right hand side of Eqs. (1 la), (1 lb) with the ~ r s ,  t , 

previous ones. 
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Compare the screened potential, 7rs, with that obtained in the iteration process 
just before and this procedure is repeated until the self-consistency in the screened 
potential is achieved. Note that the bare potential must be always inserted into 
7rs in Eq. (5a). Since our interest is to estimate the correlation between the inter- 
acting electrons, the matrix elements of the one-particle operator are of less 
importance. They are obtained from Ref. [11]. 

2.3. Exci tat ion Energies 

The excitation energies are calculated in the framework of RPA with exchange 
by using the screened potential which was calculated in the previous section. 
The complete details are given by Jorgensen and Linderberg [14J. The equation 
to be solved is 

det _ ~  _ ~  =0, (12) 

where the matrix elements are 

A'i~; jp = cSi) c5 ~ ((D - (Di) + 2(ic~ [jfl) - (ij [ aft), (13a) 

e{~; j~ = 2(ie [ j f i ) -  (ifi I jcO, (13b) 

A t - io:; j f l  - -  8 i j  6~fl ((D e --  (Di) -- ( 6  I 5~]~), (14a)  

B[~; j, = - ( ifl [ jc 0, (14b) 

and 

(iJ l k / ) :  Z C.,CpjCqk CqtTpq. (153 
Pq 

Here s refers to a singlet excitation and t to a triplet excitation, and i, j are in 
connection with occupied orbitals in the ground state and ~, fi with unoccupied 
ones .  

3. Results and Discussion 

3.1. Benzene 

The bare and screened potentials, together with the PPP parameters, and the 
orbital energies for benzene are given in Table 1. The bare potentials were 
calculated from Slater orbitals with Z =  3.25. The screening effect makes the one- 
center electron repulsion integral, 711, small, and hence ~1 has its value close to 
the one of the PPP parameters. This means that the PPP parameters inherently 
involve the effect of electron correlation. It is interesting that ~14 is considerably 
larger than 714. This tendency was observed in the other molecules. 

Using these potentials, the excitation energies of benzene were calculated. They 
are listed in Table 2. The calculation with the bare potential gave an imaginary 
value for the lowest triplet excitation energy. The PPP parameters gave rise to an 
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Table 1. Bare and screened potential values and orbital 
energies for benzene (in eV) 

Bare ~ pppb /~3 Screened r p l  Screened d 

711 17.31 11.35 11.51 12.81 
712 9.06 7.19 8.76 8.89 
~13 5.67 5.77 7.50 7.07 
714 4.96 4.97 7.72 7.10 

Orbital -10.57 -8.71 -9 .90 -10.10 
energies -6.53 -5 .60 -6 .88 -6 .83 

"Calculated with Slater orbitals, Z =  3.25, C-C 1.397 A. 
b Given by Parr [11]. 

Calculated from Eq. (1 la),/~= - 2.68, Ip= 11.16. 
d Calculated from Eq. (11 b). 
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Table 2. Excitation energies for benzene in various potentials (in eV) 

Bare PPP 

/~ 3 Screened p 1 Screened 

2(i~ ]jfl) All 2(i~ ]jfl) All 
Bare ~ screened b Bare screened Exp. 

lBf " 5.43 4.66 5.60 5.47 5.62 5.56 4.89 t181 
1B,+ " 6.88 5.88 7.58 5.60 7.63 5.62 6.17 
1E~ ~ 8.66 6.44 8.99 6.66 9.02 7.23 6.98 
1 ~  10.51 8.13 9.09 8.99 9.57 9.57 
1 ~  11.09 8.56 11.58 9.23 11.38 9.57 
1 ~  14.47 11.50 13.01 11.67 13.29 12.36 

3Be ~ - -  2.21 4.23 3.41 3.95 [191 
3~i+ " 4.33 4.11 5.13 5.02 4.75 
3B_ u 5.43 4.66 5.60 5.62 5.60 
3~2+ ~ 5.43 5.85 7.29 6.97 6.75 
3~_ 11.09 8.56 8.99 9.57 8.9 
3B1 ~ 13.79 10.82 11.37 11.98 

aThe term 2(ic~ [jfl) in Eqs. (13a), (13b) is evaluated by substituting the bare 
potential for the screened potential. In the case of the triplet excitations, the 
matrix elements contain no such term, so that the values of excitation energies 
are equal to those of the case in which all terms in Eqs. (14a), (14b) are evaluated 
by use of the screened potential. 

bAll terms in Eqs. (13a), (13b) are evaluated by use of the screened potential. 

a p p a r e n t  d e v i a t i o n  f r o m  t he  e x p e r i m e n t a l  v a l u e  fo r  t he  l o w e s t  3B~+ u s ta te .  T h e  u se  

o f . t h e  s c r e e n e d  p o t e n t i a l ,  h o w e v e r ,  gave  b e t t e r  r e su l t s  ( T a b l e  2). S ince  t he  t o t a l  

e n e r g y  o f  t h e  g r o u n d  s t a t e  was  o n l y  1 eV l o w e r  t h a n  t h a t  o b t a i n e d  f r o m  t h e  b a r e  

p o t e n t i a l ,  t h e  i m p r o v e m e n t  o f  t h e  g r o u n d  s t a t e  e n e r g y  m a y  n o t  b e  suff ic ient  fo r  t he  

e v a l u a t i o n  o f  t h e  e x c i t a t i o n  ene rg ies .  
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Table 3. Bare and screened potentials for 
butadiene (in eV) 

Bare . pppb /~3 Screened /~1 Screened 

711 1 7 . 3 1  11.35 12.77 13.42 
Y12 9.33 7.19 11.56 11.07 
'/13 5.57 5.77 6.48 6.36 

az=3 .25 ,  C1-C z 1.343 A, C2-C 3 1.467 A~, 714 3.81 4.00 6.60 6.29 
<~C1-C2-C 3 122.8 ~ These experimental '/22 1 7 . 3 1  11.35 13.56 14.17 
values are taken from [20]. 723 8.72 7.19 6.87 7.34 

b Given by Parr [11]. 

3.2. Trans-Butadiene and trans-Hexatriene 

The bare and screened potentials of butadiene are listed in Table 3. The screened 
potential 711 is smaller than ~22. Semi-empirical methods, in which the potentials 
are calculated from the function of two atomic distances, cannot describe this 
correlation effect. The excitation energies of butadiene are given in Table 4. 
Cooper and Linderberg pointed out that the use of bare potential for 2(ic~ I/'/~ ) 
removes the over-estimation of the screening effect in a diagrammatic expansion [-9]. 
However, this method gave poor excitation energies of butadiene and hexatriene 
(Table 4). 

Various potentials in hexatriene are illustrated in Fig. 3. It was found that when 
the distance between interacting electrons is shorter than the nuclear distances, the 
screened potential strongly differs from the bare potential. In this region, the bare 
potential is local and varies very rapidly with the distance between the interacting 
electrons, while the screened potential is nonlocal, slowly varies and is quite suitable 
for a HF calculation. For large distances, the screened potentials become wavy, 
because the effective interactions are expanded by particle-hole propagators which 
are applicable to the electron gas. The same tendency appeared in the application 
of Little's method to conjugated polyenes [22]. Table 5 presents several lowest 
excitation energies of hexatriene. 

Table 4. Excitation energies for butadiene (in eV) 

Bare PPP 

f 3  Screened i el Screened 

2(i~ Ij/~) All 2(i~ IJfl) All 
Bare screened Bare screened Exp. ~zll 

1B~ 6.55 4.89 8.34 5.01 7.99 5.26 
11.68 9.26 13.14 12.25 12.78 11.94 

1A. 8.89 6.48 10.34 6.61 9.88 7.19 
9.03 6.60 10.69 10.34 10.42 9.88 

3Bo 3.73 2.97 
9.58 7.68 11.36 10.85 

3a. - -  2.86 4.81 4.35 
8.89 6.48 10.34 9.88 

5.92 

3.22 

4.91 
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Fig. 3. Bare and screened potentials for 
hexatriene; (a) bare potential, (b) f l  
screened potential, (c) f 3  screened po- 
tential 

Bare /~3 Screened /~t Screened Exp. tz31 

lB, 5.42 4.43 4.53 5.09 
8.93 6.80 7.42 

1A, 7.58 5.83 6.29 
7.90 9.27 8.78 

3B~ - -  3.32 2.51 2.6 
- -  5.11 4.57 

3~, - -  4.35 3.69 
7.58 9.27 8.78 

Table 5. The lowest excitation energies for 
hexatriene (in eV) 

'Fable 6. Screened potential values for phenol (in eV) 

The values in the upper triangle are/~ 1 screened potentials, while the values in the 
lower triangle are f 3  screened potentials. Bare potentials are as follows; ?ta = 17.31, 

712=9.09, 71s=5.69, 714=4.99, 717=9.53, 727=5.82, 737~3.88, 747=3.43, 777 = 
26.09./~co = -2 .50 ,  Ip(O)= 33.900 C-C 1.39 A, C-O 1.36 A. 

3 2 

5 6 

1 2 3 4 5 6 7 

12.77 8.76 7.00 7.08 7.00 8.76 7.86 1 
12.34 8.75 6.87 6.99 6.91 6.82 2 

1 11.47 12.49 8.69 6.91 6.99 5.63 3 
2 8.57 10.96 12.34 8.69 6.87 5.91 4 
3 7.49 8.54 11.10 12.49 8.75 5.63 5 
4 7.69 7.34 8.46 10.95 12.34 6.82 6 
5 7.49 7.56 7.37 8.46 11.10 18.75 7 
6 8.57 7.39 7.56 7.34 8.54 10.96 
7 7.34 6.97 6.20 6.54 6.20 6.97 16.87 
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Table 7, The lowest excitation energies for phenol 
(in eV) 

Bare f3 Screened r 1 Screened Exp. 

159 

1At 5.72 4.56 4.62 5.82 ~241 
7.35 5.69 6.19 6.93 

1B2 4.59 4.60 4.69 4.59 
7.54 5.81 6.29 6.70 

3A~ - -  3.50 2.7l 3.54 ~251 
3.48 4.37 4.23 

3B2 3.16 4.07 3.98 
4.18 5.04 5.05 

3.3. Phenol 

Table 6 contains the bare and screened potentials o f  phenol,  and Table 7 contains 
the corresponding excitation energies. As shown in the other  molecules presented 
in this study, the/~3 screened potential gave more  adequate  values than the /~1 
ones for the triplet excitation energies. 

4. Conclusion 

The effective interaction was expanded by the polarizat ion propagators  whose 
vertex parts  correspond to either the singlet or the triplet excitation, and the 
excitation energies of  the ~z-electron systems were calculated. The one-center 
screened potential,  ~ 11, was calculated to be much smaller than the bare potential, 
711. The two-center  screened potential, ~/~s, decreased with the distance between 
r and s more  slowly than the bare potential,  7,s. These results show that  ~-electrons 
move nonlocal ly in a molecule. 

The C o u l s o n - R u s h b r o o k e  theorem in alternant hydrocarbons  broke down [7, 22] 
in Little's method,  because of  insufficient considerat ion of  the correlation effects. 
There was, however, no such case in the present screened potential calculation. 
Excitation energies calculated by the present screened potential  method were in 
good agreement  with the observed values, and the triplet instability which appeared 
in the R P A  calculation was removed.  The f 3  screened potential was more effective 
for the triplet excitations than/~  1. However,  the large difference between the two 
potentials was no t  found in the case of  singlet excitations. 
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